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Abstract
The low-temperature properties of confined water and the relation between
protein and solvent dynamics have been studied by broadband dielectric
spectroscopy with the aim to understand the role of hydration water for protein
dynamics. At low temperatures (below approximately 200 K) confined water
generally exhibits two relaxation processes: one process that is due to the local
β-relaxation, and a faster and even more local process that is interpreted to
arise from the motion of Bjerrum-type defects. These relaxation processes,
showing Arrhenius temperature dependences, are also observed in glycerol–
water solvents of myoglobin containing �50 wt% water. In the temperature
regime below 200 K, only a local protein process is observed. The activation
energies of this protein process and the β-relaxation in the solvent are similar,
suggesting that this local protein process is determined by the β-relaxation in the
solvent. At about 200 K the nature of the dynamics changes dramatically and an
onset of cooperative and large-scale dynamics is observed for both the water-
rich solvent and the protein. We believe that the reason for this crossover is
that the β-relaxation in the solvent merges with the non-observable α-relaxation
at this temperature, giving rise to a merged α–β-relaxation in the solvent at
higher temperatures. Also above this temperature the fastest observed protein
processes seem to be determined by the solvent dynamics, as suggested for
‘solvent-slaved’ protein motions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is well known that water associated with proteins, nucleic acids, polysaccharides and
assemblies of smaller molecules that make up living organisms is essential for their structure
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and function. It determines their mobility, allows them to associate and dissociate, enables
proton transfer, and facilitates a large number of biochemical processes [1–4]. Proteins are,
for instance, known to be inactive in the dehydrated state up to about 0.2 (g of water)/(g
of protein), and full activity requires roughly an equal fraction of water and protein [5, 6].
Experiments [7, 8] and molecular dynamics (MD) simulations [9, 10] have indicated that the
protein motions are mainly determined by the water dynamics, i.e. the protein motions are
‘slaved’ (or ‘driven’) by the water motions. Furthermore it has been suggested [8] that the
most local protein motions are slaved by the β-relaxation in the hydration shell whereas the
global conformational changes of a protein are slaved by the α-relaxation in the bulk solvent.
This ‘slaving’ does not mean that a solvent relaxation and its associated protein motions occur
on the same timescale (i.e. having the same relaxation rate), but that the relaxation times of
the processes show similar temperature dependences, i.e. similar activation energies at a given
temperature. The reason for the protein motions being slower than their related solvent motions
is that a relaxation process in the protein generally requires a large number of elementary steps,
which can only take place if the solvent moves. In this paper we further elucidate the relation
between protein and solvent motions by studying myoglobin in a water–glycerol mixture.

Due to the coupling between the dynamics of a protein and its surrounding water, it
is important to investigate not only the protein but also the properties of its water to fully
understand the protein dynamics. It is known that both the structure and the dynamics of
the solvating water molecules are affected by the presence of a protein [11] due to surface
interactions and confinement effects, but it is less known what the nature of the water dynamics
is in the deeply supercooled regime. In fact, the dynamical properties of supercooled water
in confined geometries and around biomolecules is currently intensively debated [12–20]. It
has been suggested that such water exhibits a liquid–liquid transition at a temperature of
approximately 225 K [12–16]. A liquid–liquid transition is thought to exist in supercooled
water since glassy water is known to exist in two forms with different density [21]. Associated
with this proposed transition is a dynamical crossover, where the fragile (i.e. a highly non-
Arrhenius temperature dependence of the viscosity and its related α-relaxation time) high-
temperature behaviour would change to a strong (i.e. an Arrhenius temperature dependence)
low-temperature behaviour [22]. Furthermore, it has been suggested [14] that this fragile-
to-strong transition in the hydration water around proteins causes them to undergo a similar
transition. In a recent letter [19] we argued that no true fragile-to-strong transition is present
for such hydration water, but that an apparent fragile-to-strong transition occurs where the
merged high-temperature α–β-relaxation splits to a local β-relaxation and a non-observable
α-relaxation. However, here we show that the low-temperature (i.e. below about 225 K) data
reported in [12–16] is neither due to the α-relaxation nor the β-relaxation of the interfacial
water, but to an even more local process that is also observed in ice and has been interpreted to
arise from the motion of Bjerrum-type defects [23] (due to a non-perfect hydrogen-bonded
network of water molecules). On the other hand, the present study indicates that protein
motions are slaved by the solvent motions and that a protein therefore undergoes a similar
dynamic crossover as its solvent does when the low-temperature β-relaxation transforms to a
merged α–β-relaxation at high temperatures (≈200 K).

Thus, in this paper we focus on two currently debated issues: whether a true
fragile-to-strong transition occurs for interfacial water and whether protein motions are
solvent slaved. The present investigation is aimed to complement our previous studies of
supercooled water confined in a wide range of model systems [17–19, 24–29] and biological
materials [17, 19, 30–34] by new differential scanning calorimetry (DSC) measurements on
fully hydrated Na-vermiculite clay and nanoporous silica of type MCM-41, and dielectric
measurements of myoglobin in a water–glycerol mixture.
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2. Experimental details

Two nanoporous silica samples of type MCM-41, with pore diameters d = 21 and 36 Å,
respectively, were prepared by the modified Beck method [35]. The samples were exposed to
100% humidity after being evacuated at 573 K for 24 h to remove impurities. Similarly, a fully
hydrated Na-vermiculite clay (provided by Askania, Sweden) was produced by exposing the
sample to 100% humidity for 24 h.

The myoglobin used in this study was a horse heart myoglobin from Sigma. The protein
was in form of freeze-dried powder, and as dry protein, powder from the bottle was used. The
solvents in this study were different water–glycerol mixtures of various water contents. In
this paper the results from the dielectric measurements obtained for the sample with 50 wt%
water (equal fraction of water and glycerol) at the solvent level h = 2.0 (i.e. 2 g solvent per
gram protein) is shown. The results from other solvent levels, as well as other water–glycerol
compositions will be shown and discussed elsewhere [36].

For the DSC measurements we used a Q1000 calorimeter from TA Instruments. All
measurements were performed with cooling and heating rates of |dT/dt| = 10 K min−1. The
samples were measured in hermetically sealed aluminium pans.

The dielectric measurements on myoglobin in water–glycerol were performed on a
broadband dielectric spectrometer from Novocontrol. The sample was investigated in the
frequency and temperature ranges 10−2–109 Hz and 120–350 K, respectively. For the lower
frequencies (10−2–107 Hz) an Alfa-S high-resolution dielectric analyser was used, and the
measurements in the higher frequency range (106–109 Hz) were carried out on an Agilent
4291B RF impedance analyser. The sample was placed between two gold-plated electrodes
and a ‘Teflon hat’ (a film of thickness 100 μm), placed between the sample and the upper
electrode, was used in order to reduce the large contribution of electrode polarization to the
spectra at low frequencies. The sample thickness was 0.1 mm (determined by silica spacers)
for all measurements, and the sample diameter for the low-frequency part was 20 mm, while
electrodes of diameter 10 mm were used for the higher frequencies. After preparation, the
sample was placed in a sample holder and cooled down to 120 K and then reheated to 350 K
while isothermal (±0.2 K) scans were made at every fifth degree. The imaginary part of the
dielectric response, ε∗( f ) = ε′( f ) − ε′′( f ), was then analysed. The dielectric loss peaks
obtained for the protein sample were fitted to several Havriliak–Negami functions:

ε′′(ω) =
∑

Im

(
εs − ε∞

(1 + (iωτ)α)β

)
(1)

where ω = 2π f is the angular frequency, τ the relaxation time, and εs and ε∞ are the
static dielectric constant and the limiting value of the dielectric constant at high frequencies,
respectively. α and β are shape parameters that determine the symmetric and asymmetric
broadening of the relaxation peak, respectively.

3. Results and discussion

Figure 1 shows results from DSC measurements on a fully hydrated Na-vermiculite clay and
two fully hydrated MCM-41 samples with pore diameters of 21 and 36 Å, respectively. As
is evident from the figure, only the MCM-41 sample with a pore diameter of 36 Å shows
a strong endothermic peak due to melting of ice in the pores (approximately 30% of the
water crystallized in this sample). For the other two samples the confinement is severe
enough to prevent the supercooled water from crystallizing. However, despite no significant
crystallization occurring, it is not possible to observe any glass transition. One may argue that
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Figure 1. DSC data (heating rate 10 K min−1) of fully hydrated Na-vermiculite clay (dotted line)
and MCM-41 with pore diameters of 21 Å (solid line) and 36 Å (dashed line). In (b) the figure
is plotted on an expanded scale to verify that no calorimetric Tg can be observed for any of the
samples.

this is a natural result due to the severe confinement of the water, but the fact is that for all
other liquids we have confined in the same or similar host materials there is no difficulty in
observing their calorimetric glass transitions, even for more severe confinements than in the
present cases [37]. Thus, the absence of any calorimetric glass transition temperature Tg for
the confined supercooled water is an anomalous result in comparison to other liquids, and since
the molecular motions that are responsible for the glass transition are given by the viscosity-
related α-relaxation it is likely that also a dielectric α-relaxation is absent in the temperature
range of an expected Tg. The idea that no α-relaxation is observed in the deeply supercooled
regime of such severely confined water is also consistent with recent detailed analysis of the
dielectric main relaxation process of confined supercooled water [19]. In [19] it was shown
that the ‘universal’ main relaxation process in systems of severely confined deeply supercooled
water exhibits all the typical features of a local β-relaxation. Thus, in this low-temperature
regime the more cooperative α-relaxation cannot be observed. We believe that the reason
for this is that deeply supercooled water requires an exceptionally extended three-dimensional
hydrogen-bonded network in order to show the α-relaxation (and thereby a calorimetric Tg), in
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Figure 2. Relaxation times for confined water from dielectric spectroscopy and quasi-elastic
neutron scattering (QENS). The data points correspond to the main relaxation process of water
confined in approximately 20 Å pores of MCM-41, obtained by QENS [12] (squares) and dielectric
spectroscopy [29] (filled circles). In addition, the faster ‘universal’ dielectric relaxation process, due
to the motion of Bjerrum-type defects, of supercooled water in clay [25] (triangles), phospholipids
membrane DMPC [44] (open circles) and myoglobin (crosses) is shown for comparison. The lines
are fits to the high- and low-temperature QENS data, taken from [12].

contrast to most other liquids where the cooperatively rearranging regions are smaller or can
adapt their shape to the confinements such that the α-relaxation can appear [19]. An apparent
fragile-to-strong transition occurs around 200 K (depending on the confinement) where the
low-temperature β-relaxation merges with the non-observable α-relaxation. As is evident in
figure 2, such a crossover in the temperature dependence of the dielectric main relaxation
process from a low-temperature β-process to a merged α–β-process at high temperatures is
clearly seen at about 180 K for water confined in 21 Å pores of MCM-41. However, as
is also shown in figure 2, an even more dramatic transition from a high-temperature non-
Arrhenius dependence to a low-temperature Arrhenius behaviour has been observed to occur at
about 225 K in quasi-elastic neutron scattering (QENS) and 1H nuclear magnetic resonance
(NMR) diffusion measurements on confined and hydration water [12–16]. In figure 2 we
show that the low-temperature behaviour observed in the QENS and NMR measurements
extrapolates to the second, and faster, ‘universal’ dielectric process. This dielectric process
seems to be present in all systems containing deeply supercooled water, as well as in ordinary
ice [25]. It has been interpreted to arise from the motion of so-called Bjerrum-type defects,
which are orientationally disordered water molecules that are hydrogen bonded to fewer than
four other water molecules [23]. Such water molecules can perform local reorientations, and
first-principles calculations have shown [38–41] that this leads to a migration of the defects.
Moreover, the first-principles calculations show that long-range proton diffusion is directly
coupled to the migration of the defects [38–41]. This explains how the propagation of very
local reorientational motions of single water molecules can give rise to the long-range proton
diffusivity measured by QENS and NMR. Hence, the long-range motion of the protons, as
measured by these techniques, is completely decoupled from the long-range motion of the water
molecules. The ‘fragile-to-strong transition’ observed at about 225 K in [12–16] is therefore
only a result of a decoupling between the merged α–β-relaxation and the diffusion of single
protons. Since this proton diffusion is not related to the α-relaxation (or viscosity) of the deeply
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Figure 3. Imaginary part (ε′′) of the dielectric spectra as a function of frequency and temperature
for a sample containing an equal weight fraction of myoglobin, water and glycerol (i.e. 50 wt%
water in the solvent, and a total solvent content h = 2). The intensity at the highest frequencies
and lowest temperatures was too low to give reliable data points, and consequently these data points
have been removed from the measured spectra. At least two solvent processes, denoted w1 and w2,
and four protein processes2, p1–p4, could be observed. See the main text for assignments of the
processes.

supercooled water it cannot define the fragility of the liquid. Thus, also this crossover in the
temperature dependence of the observed relaxation time should not be considered as a true
fragile-to-strong transition, as it is not reflecting any transition in the relaxational dynamics of
the water molecules.

Figure 3 shows the imaginary part (ε′′) of the dielectric spectra as a function of temperature
and frequency for myoglobin in a water–glycerol mixture of 50 wt%. The amount of myoglobin
was the same as for each solvent component. As is evident from the figure, the sample exhibits
a complicated relaxation behaviour, although two dielectric loss peaks seem to dominate the
spectra. However, a closer look at the peak denoted p1–p3 in figure 3 shows that it actually
contains three relaxation processes of the protein2, although not all of them are present in
the whole temperature range. In addition to these three protein processes one slower protein
process2 (p4) and two faster solvent processes (w1 and w2) can be observed. In figure 4(a) we
present relaxation times obtained from the curve fitting (using equation (1)) of the spectra that
are shown in figure 3. The solvent process w1, which is only observed at low temperatures, is
due to the motion of Bjerrum-type defects, as discussed above for confined water. The slower
solvent process w2 is at low temperatures identical to the ‘universal’ β-relaxation in deeply
supercooled confined water, as also discussed above for confined water. At approximately
200 K this β-process transforms to a merged α–β-relaxation of the water–glycerol mixture,
in analogy with the scenario for confined supercooled water where a merging with a non-
observable α-relaxation occurs at about the same temperature. At the crossover temperature at
200 K the dynamics changes from a low-temperature Arrhenius behaviour to a non-Arrhenius
dependence at high temperatures.

2 Due to the inhomogeneous nature of the sample a Maxwell–Wagner polarization may arise. If so, one of the
processes p2–p4 might not be due to protein motions.
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Figure 4. (a) Dielectric relaxation times obtained for the solvent and protein processes shown in
figure 3. Process w1 corresponds to the motion of Bjerrum-type defects in supercooled water (open
triangles), w2 to the main relaxation process in the solvent (filled triangles), p1 to local motions in
the protein (open squares), p2 to motions of polar side groups of the protein (filled squares), and
p3 and p4 to conformational protein fluctuations (open and filled circles). (b) The relaxation times
of the three fastest protein processes (p1–p3) are shown as a function of the relaxation time for
the main process in the solvent (w2). Note the linear dependences between both the local protein
process and the low-temperature (β-like) solvent process (below 200 K) as well as between the two
fastest protein processes and the main (α) solvent relaxation above 200 K.

In figure 4(a) it is also seen that only one protein process (p1) is present below 200 K.
This process also shows an Arrhenius temperature dependence, and is therefore attributed to
local non-cooperative protein motions. At about 200 K, where the local β-relaxation in the
solvent merges with the non-observable α-relaxation, there is a significant change in the protein
dynamics. Several cooperative protein processes appear, suggesting that the onset of more
large-scale solvent motions give rise to a glass-transition-like phenomenon in the protein. The
origin of the fastest cooperative protein process (p2) has been attributed to motions of polar
side groups [30, 42], and the slower processes (p3 and p4) are most likely due to more global
conformational fluctuations in the protein [43]. A more complete account of the results from
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the analysis of this system as well as other compositions and volume fractions of the water–
glycerol solvent will be given elsewhere [36].

In order to investigate the relation between the solvent dynamics and the observed protein
processes the relaxation times of the three fastest protein processes (p1–p3) have been plotted
as a function of the relaxation time for the main process in the solvent (w2); see figure 4(b).
If two relaxation processes have the same temperature dependence there should be a linear
relation (i.e. slope of unity in a log–log plot) between them. This is also what is observed in
figure 4(b) for the three fastest protein processes. This implies that the local protein process
(p1) has the same activation energy as the low-temperature β-relaxation (w2 below 200 K)
in the solvent, and that the two cooperative protein processes (p2 and p3) exhibit a similar
non-Arrhenius temperature dependence as the solvent does in the temperature range where the
α- and β-relaxations are merged (i.e. process w2 above 200 K). Therefore, our findings support
a recent study by Fenimore et al [8], where it was proposed that the most local protein motions
are slaved by the β-relaxation in the solvent whereas the more global protein motions are slaved
by the α-relaxation in the solvent. These results further suggest that no global, and biologically
most important, protein motions can occur in water-rich solvents at low temperatures where no
α-relaxation is present in the solvent. This is of course an important result for cryopreservation
of food.

Finally, it should be noted that although solvent dynamics is essential for protein motions
and functions there are other characteristics that make proteins unique. In fact, recent studies
of other soft biological materials, such as lipid membranes, have indicated that certain types of
motions in these materials are also solvent slaved [44]. This suggests that the concept ‘solvent
slaving’ is not unique for proteins.

4. Conclusions

In this paper we show that the earlier proposed [12–16] fragile-to-strong transition of
supercooled water in confined geometries and around biomolecules is not a true transition
since the low-temperature (below ≈225 K) Arrhenius behaviour is most likely due to a proton
transport process facilitated by the migration of Bjerrum-type defects that are present in both
supercooled water and ice. The Bjerrum-type defects are due to water molecules that are not
fully hydrogen bonded, and these water molecules can only perform local reorientations at
low temperatures. Therefore, the apparent fragile-to-strong transition at about 225 K is most
likely due to a decoupling of the motion of the Bjerrum-type defects (and the associated proton
transport process) from the merged high-temperature α–β-relaxation.

The most interesting result of this study is, however, that we found a similar crossover
in the protein dynamics as for the solvent around 200 K where there is an onset of global
cooperative motions both in the protein and the solvent. Thus, below ≈200 K it seems
that there are only local protein motions that are slaved by a local (β-like) relaxation in the
solvent, whereas at higher temperatures (above 200 K) a merged α–β-relaxation in the solvent
determines the more global protein motions. This behaviour is therefore consistent with the
findings by Fenimore et al [8] that large-scale conformational changes of the protein are slaved
by the α-relaxation in the solvent and more local protein motions are slaved by the β-relaxation
in the hydration shell.
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